Some nutritive-value features of venison from red deer stags and hinds

Roger Purchas¹, Ellen C. Triumf ²,³, & Bjørg Egelandsdal²

1. Institute of Food, Nutrition and Human Health, Massey University, Palmerston North 4442, New Zealand.
2. The Norwegian University of Life Science, Department of Chemistry, Biotechnology and Food Science, P.O. Box 5003, NO-1432 Aas, Norway.

Objectives

To compare the nutritive value of venison from red deer stags and hinds, in terms of:

1. Total iron and % haem iron
2. The bioactive compounds coenzyme Q₁₀, taurine and carnosine
3. Fatty acid proportions in intramuscular fat.

Introduction

- Some data is available on the nutritive value of venison from red deer [1], but there is limited information on differences between venison from red deer stags and hinds.
- There is also a lack of information on the concentrations of certain bioactive compounds in venison (i.e. non-nutritional compounds that are beneficial to the health or well-being of consumers).
- This poster presents data in both these areas.

Methods

- Twenty red deer (Cervus elaphus) made up of 10 stags (males) and 10 hinds (females) were slaughtered on the same day.
- The hinds and stags were from different farms, but all were finished on pastures of mainly perennial ryegrass and white clover.
- At ca. 24 h post mortem the longissimus muscle from the last rib to the pelvic bone was collected from both sides and chilled at 1-2°C for 7 d before being frozen.
- Analytical procedures for analysing intramuscular fat (Soxhlet), vitamin E (HPLC), fatty acids (GLC), and certain bioactive compounds (HPLC) were as reported for previous studies [2].
- Data was analysed by means of a one-way ANOVA model.

Results

- Mean carcass weight was 3.4 kg heavier for the stags (55.8 vs 52.4 kg; P = 0.04), but the hind carcasses were non-significantly fatter (GR of 5.4 vs 4.9 mm; P = 0.21).
- Short-loin sample weights were similar (~1200 g) for the two groups, but the hind samples had more intramuscular fat (Fig. 1).
- Muscle iron content at > 3.0 mg/100g (Table 1) was similar between groups, but higher than published values for beef and lamb [2].

Conclusions

1. Relative to venison from stags, that from hinds had more intramuscular fat, vitamin E, coenzyme Q₁₀, taurine, and anserine.
2. Relative to beef and lamb from other studies, venison contained more iron, less fat, but similar amounts of several bioactive compounds.

Table 1: Means for concentrations of selected nutrients in the longissimus muscle of red deer

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Stags</th>
<th>Hinds</th>
<th>Sign</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total iron (mg/100g)</td>
<td>3.07</td>
<td>3.34</td>
<td>NS</td>
<td>0.31</td>
</tr>
<tr>
<td>Haem iron (% total)</td>
<td>83.4</td>
<td>83.4</td>
<td>NS</td>
<td>1.06</td>
</tr>
<tr>
<td>CoQ₁₀ (mg/100g)</td>
<td>2.82</td>
<td>6.29</td>
<td>***</td>
<td>0.98</td>
</tr>
<tr>
<td>Carnosine (mg/100g)</td>
<td>1.81</td>
<td>37.1</td>
<td>***</td>
<td>9.4</td>
</tr>
<tr>
<td>Vitamin E (mg/100g)</td>
<td>290.6</td>
<td>329.7</td>
<td>NS</td>
<td>46.5</td>
</tr>
<tr>
<td>Anserine (mg/100g)</td>
<td>188.2</td>
<td>251.4</td>
<td>***</td>
<td>31.3</td>
</tr>
</tbody>
</table>

Fig. 2 Differences between longissimus samples from red deer stags and hinds for the P/S ratio and n-6/n-3 ratio of intramuscular fat (means ± s.e.)

References